Solve this following

Question:

Let $a, b \in R$. If the mirror image of the point $P(a$, 6,9 ) with respect to the line

$\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$ is $(20, b,-a-9)$, then $|a+b|$

is equal to :

 

  1. 88

  2. 86

  3. 84

  4. 90


Correct Option: 1,

Solution:

$\mathrm{P}(9,6,9)$

$\frac{x-3}{7}=\frac{y-2}{5}=\frac{z-1}{-9}$

$Q=(20, b,-a-9)$

$\frac{\frac{20+a}{2}-3}{7}=\frac{\frac{b+6}{2}-2}{5}=\frac{-\frac{9}{2}-1}{-9}$

$\frac{14+9}{14}=\frac{\mathrm{b}+2}{10}=\frac{\mathrm{a}+2}{18}$

$\Rightarrow \mathrm{a}=-56$ and $\mathrm{b}=-32$

$\Rightarrow|\mathrm{a}+\mathrm{b}|=88$

 

Leave a comment