Solve this following

Question:

$\frac{1}{3^{2}-1}+\frac{1}{5^{2}-1}+\frac{1}{7^{2}-1}+\ldots+\frac{1}{(201)^{2}-1}$ is equal

to

  1. $\frac{101}{404}$

  2. $\frac{25}{101}$

  3. $\frac{101}{408}$

  4. $\frac{99}{400}$


Correct Option: , 2

Solution:

$T_{n}=\frac{1}{(2 n+1)^{2}-1} \frac{1}{(2 n+2) 2 n}=\frac{1}{4(n)(n+1)}$

$=\frac{(n+1)-n}{4 n(n+1)}=\frac{1}{4}\left(\frac{1}{n}-\frac{1}{n+1}\right)$

$S=\frac{1}{4}\left(1-\frac{1}{101}\right)=\frac{1}{4}\left(\frac{100}{101}\right)=\frac{25}{101}$

Leave a comment