Solve this following

Question:

If the variance of 10 natural numbers $1,1,1, \ldots ., 1, \mathrm{k}$ is less than 10 , then the maximum possible value of $\mathrm{k}$ is

 

Solution:

$\sigma^{2}=\frac{\Sigma x^{2}}{n}-\left(\frac{\Sigma x}{n}\right)^{2}$

$=\frac{9+\mathrm{k}^{2}}{10}-\left(\frac{9+\mathrm{k}}{10}\right)^{2}<10$

$90+10 k^{2}-81-k^{2}-18 k<1000$

$9 k^{2}-18 k-991<0$

$\mathrm{k}^{2}-2 \mathrm{k}<\frac{991}{9}$

$(\mathrm{k}-1)^{2}<\frac{1000}{9}$

$\frac{-10 \sqrt{10}}{3}<\mathrm{k}-1<\frac{10 \sqrt{10}}{3}$

$\mathrm{k}<\frac{10 \sqrt{10}}{3}+1$

$\mathrm{k} \leq 11$

Maximum value of $\mathrm{k}$ is 11 .

 

Leave a comment