Solve this following

Question:

Let $\vec{a}, \vec{b}, \vec{c}$ be three non-zero vectors which are pairwise non-collinear. If $\vec{a}+3 \vec{b}$ is collinear with $\overrightarrow{\mathrm{c}}$ and $\overrightarrow{\mathrm{b}}+2 \overrightarrow{\mathrm{c}}$ is colliner with $\overrightarrow{\mathrm{a}}$, then $\overrightarrow{\mathrm{a}}+3 \overrightarrow{\mathrm{b}}+6 \overrightarrow{\mathrm{c}}$ is:

  1. $\overrightarrow{\mathrm{a}}+\overrightarrow{\mathrm{c}}$

  2. $\vec{a}$

  3. $\overrightarrow{\mathrm{C}}$

  4. $\overrightarrow{0}$


Correct Option: , 4

Solution:

Leave a comment