$\sum_{\mathrm{i}=1}^{20}\left(\frac{{ }^{20} \mathrm{C}_{\mathrm{i}-1}}{{ }^{20} \mathrm{C}_{\mathrm{i}}+{ }^{20} \mathrm{C}_{\mathrm{i}-1}}\right)=\frac{\mathrm{k}}{21}$, then $\mathrm{k}$ equals :
Correct Option: , 3
$\sum_{i=1}^{20}\left(\frac{{ }^{20} \mathrm{C}_{\mathrm{i}-1}}{{ }^{20} \mathrm{C}_{\mathrm{i}}+{ }^{20} \mathrm{C}_{\mathrm{i}-1}}\right)^{3}=\frac{\mathrm{k}}{21}$
$\Rightarrow \sum_{\mathrm{i}=1}^{20}\left(\frac{{ }^{20} \mathrm{C}_{\mathrm{i}-1}}{{ }^{21} \mathrm{C}_{\mathrm{i}}}\right)^{3}=\frac{\mathrm{k}}{21}$
$\Rightarrow \sum_{\mathrm{i}=1}^{20}\left(\frac{\mathrm{i}}{21}\right)^{3}=\frac{\mathrm{k}}{21}$
$\Rightarrow \frac{1}{(21)^{3}}\left[\frac{20(21)}{2}\right]^{2}=\frac{\mathrm{k}}{21}$
$\Rightarrow 100=\mathrm{k}$