Solve this following

Question:

If $\mathrm{A}=\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1\end{array}\right]$ and $\mathrm{M}=\mathrm{A}+\mathrm{A}^{2}+\mathrm{A}^{3}+\ldots .+\mathrm{A}^{20}$

then the sum of all the elements of the matrix $M$ is

equal to____________

Solution:

$A^{n}=\left[\begin{array}{ccc}1 & n & \frac{n^{2}+n}{2} \\ 0 & 1 & n \\ 0 & 0 & 1\end{array}\right]$

So, required sum

$=20 \times 3+2 \times\left(\frac{20 \times 21}{2}\right)+\sum_{\mathrm{r}=1}^{20}\left(\frac{\mathrm{r}^{2}+\mathrm{r}}{2}\right)$

$=60+420+105+35 \times 41=2020$

 

Leave a comment