Question:
If $f: \mathrm{R} \rightarrow \mathrm{R}$ is a function defined by
$f(x)=[x-1] \cos \left(\frac{2 x-1}{2}\right) \pi$, where [.] denotes
the greatest integer function, then $f$ is :
Correct Option: , 3
Solution:
For $x=n, n \in Z$
$\mathrm{LHL}=\lim _{x \rightarrow \mathrm{n}^{-}} f(\mathrm{x})=\lim _{\mathrm{x} \rightarrow \mathrm{n}^{-}}[\mathrm{x}-1] \cos \left(\frac{2 \mathrm{x}-1}{2}\right) \pi$
$=0$
$\mathrm{RHL}=\lim _{x \rightarrow \mathrm{n}^{+}} f(\mathrm{x})=\lim _{x \rightarrow \mathrm{n}^{+}}[\mathrm{x}-1] \cos \left(\frac{2 \mathrm{x}-1}{2}\right) \pi$
$=0$
$f(\mathrm{n})=0$
$\Rightarrow \quad \mathrm{LHL}=\mathrm{RHL}=f(\mathrm{n})$
$\Rightarrow f(\mathrm{x})$ is continuous for every real $\mathrm{x}$.