Solve this following

Question:

If $P$ is a point on the parabola $y=x^{2}+4$ which is closest to the straight line $y=4 x-1$, then the co-ordinates of $\mathrm{P}$ are :

 

  1. $(3,13)$

  2. $(1,5)$

  3. $(-2,8)$

  4. $(2,8)$


Correct Option: , 4

Solution:

$P: y=x^{2}+4$

$\mathrm{k}=\mathrm{h}^{2}+4$

$\mathrm{L}: \mathrm{y}=4 \mathrm{x}-1$

$y-4 x+1=0$

$\mathrm{d}=\mathrm{AB}=\left|\frac{\mathrm{k}-4 \mathrm{~h}+1}{\sqrt{5}}\right|=\left|\frac{\mathrm{h}^{2}-4-4 \mathrm{~h}+1}{\sqrt{5}}\right|$

$\frac{\mathrm{d}(\mathrm{d})}{\mathrm{dh}}=\frac{2 \mathrm{~h}-4}{\sqrt{5}}=0$

$h=2$

$\frac{\mathrm{d}^{2}(\mathrm{~d})}{\mathrm{dh}^{2}}=\frac{2}{\sqrt{5}}>0$

$\begin{array}{ll}\therefore & \mathrm{k}=4+4=8 \\ \therefore & \text { Point }(2,8)\end{array}$

 

Leave a comment