Solve this following

Question:

In a triangle $\mathrm{ABC}$, if $|\overrightarrow{\mathrm{BC}}|=8,|\overrightarrow{\mathrm{CA}}|=7$,

$|\overrightarrow{\mathrm{AB}}|=10$, then the projection of the vector $\overrightarrow{\mathrm{AB}}$

on $\overrightarrow{\mathrm{AC}}$ is equal to :

  1. $\frac{25}{4}$

  2. $\frac{85}{14}$

  3. $\frac{127}{20}$

  4. $\frac{115}{16}$


Correct Option: , 2

Solution:

$|\vec{a}|=8,|\vec{b}|=7,|\vec{c}|=10$

$\cos \theta=\frac{|\vec{b}|^{2}+|\vec{c}|^{2}-|\vec{a}|^{2}}{2|\vec{b}||\vec{c}|}=\frac{17}{28}$

Projection of $\overrightarrow{\mathrm{c}}$ on $\overrightarrow{\mathrm{b}}$

$=|\vec{c}| \cos \theta$

$=10 \times \frac{17}{28}$

$=\frac{85}{14}$

 

Leave a comment