Solve this following

Question:

If $\overrightarrow{\mathrm{u}}, \overrightarrow{\mathrm{v}}, \overrightarrow{\mathrm{w}}$ are non-coplanar vectors and $\mathrm{p}, \mathrm{q}$ are real numbers, then the equality

$[3 \overrightarrow{\mathrm{u}} \mathrm{p} \overrightarrow{\mathrm{v}} \mathrm{p} \overrightarrow{\mathrm{w}}]-[\mathrm{p} \overrightarrow{\mathrm{v}} \overrightarrow{\mathrm{w}} \mathrm{q} \overrightarrow{\mathrm{u}}]-[2 \overrightarrow{\mathrm{w}} \mathrm{q} \overrightarrow{\mathrm{v}} \mathrm{qu}]=0$ holds for :-

 

  1. More than two but not all values of $(p, q)$

  2. All values of $(p, q)$

  3. Exactly one value of $(p, q)$

  4. Exactly two values of $(p, q)$


Correct Option: , 3

Solution:

Leave a comment