Solve this following

Question:

If $\sum_{\mathrm{r}=0}^{25}\left\{{ }^{50} \mathrm{C}_{\mathrm{r}} \cdot{ }^{50-\mathrm{r}} \mathrm{C}_{25-\mathrm{r}}\right\}=\mathrm{K}\left({ }^{50} \mathrm{C}_{25}\right)$, then $\mathrm{K}$ is equal to :

 

  1. $2^{25}-1$

  2. $(25)^{2}$

  3. $2^{25}$

  4. $2^{24}$


Correct Option: , 3

Solution:

$\sum_{r=0}^{25}{ }^{50} C_{r} \cdot{ }^{50-r} C_{25-r}$

$=\sum_{r=0}^{25} \frac{50 !}{r !(50-r) !} \times \frac{(50-r) !}{(25) !(25-r) !}$

$=\sum_{r=0}^{25} \frac{50 !}{25 ! 25 !} \times \frac{25 !}{(25-r) !(r !)}$

$={ }^{50} \mathrm{C}_{25} \sum_{\mathrm{r}=0}^{25}{ }^{25} \mathrm{C}_{\mathrm{r}}=\left(2^{25}\right){ }^{50} \mathrm{C}_{25}$

$\therefore \mathrm{K}=2^{25}$

Option (3)

Leave a comment