The common difference of the A.P. $b_{1}, b_{2}, \ldots$, $\mathrm{b}_{\mathrm{m}}$ is 2 more than the common difference of A.P. $\mathrm{a}_{1}, \mathrm{a}_{2}, \ldots, \mathrm{a}_{\mathrm{n}}$. If $\mathrm{a}_{40}=-159, \mathrm{a}_{100}=-399$ and $\mathrm{b}_{100}=\mathrm{a}_{70}$, then $\mathrm{b}_{1}$ is equal to :
Correct Option: , 2
$a_{1}, a_{2}, \ldots, a_{n} \rightarrow(C D=d)$
$\mathrm{b}_{1}, \mathrm{~b}_{2}, \ldots, \mathrm{b}_{\mathrm{m}} \rightarrow(\mathrm{CD}=\mathrm{d}+2)$
$a_{40}=a+39 d=-159$ ..........(1)
$a_{100}=a+99 d=-399$ ..........(2)
Subtract : $60 \mathrm{~d}=-240 \Rightarrow \mathrm{d}=-4$
using equation (1)
$a+39(-4)=-159$
$a=156-159=-3$
$a_{70}=a+69 d=-3+69(-4)=-279=b_{100}$
$\mathrm{b}_{100}=-279$
$\mathrm{b}_{1}+99(\mathrm{~d}+2)=-279$
$\mathrm{~b}_{1}-198=-279 \Rightarrow \mathrm{b}_{1}=-81$