Solve this following

Question:

If $\lambda_{1}$ and $\lambda_{2}$ are the wavelengths of the third member of Lyman and first member of the Paschen series respectively, then the value of $\lambda_{1}: \lambda_{2}$ is:

  1. $1: 9$

  2. $7: 108$

  3. $7: 135$

  4. $1: 3$


Correct Option: , 3

Solution:

$\frac{1}{\lambda_{1}}=\mathrm{R}\left[\frac{1}{1^{2}}-\frac{1}{4^{2}}\right]$

$\frac{1}{\lambda_{2}}=\mathrm{R}\left[\frac{1}{3^{2}}-\frac{1}{4^{2}}\right]$

$\frac{\lambda_{1}}{\lambda_{2}}=\frac{\left[\frac{1}{9}-\frac{1}{16}\right]}{\left[1-\frac{1}{16}\right]}=\frac{7}{9 \times 15}$

$\frac{\lambda_{1}}{\lambda_{2}}=\frac{7}{135}$

 

Leave a comment