A wire of density $9 \times 10^{-3} \mathrm{~kg} \mathrm{~cm}^{-3}$ is stretched between two clamps $1 \mathrm{~m}$ apart. The resulting strain in the wire is $4.9 \times 10^{-4}$. The lowest frequency of the transverse vibrations in the wire is
(Young's modulus of wire $Y=9 \times 10^{10} \mathrm{Nm}^{-2}$ ), (to the nearest integer),
$(35.00)$
Given, Denisty of wire, $\sigma=9 \times 10^{-3} \mathrm{~kg} \mathrm{~cm}^{-3}$
Young's modulus of wire, $Y=9 \times 10^{10} \mathrm{Nm}^{-2}$
Strain $=4.9 \times 10^{-4}$
$Y=\frac{\text { Stress }}{\text { Strain }}=\frac{T / A}{\text { Strain }}$
$\therefore \frac{T}{A}=Y \times$ Strain $=9 \times 10^{9} \times 4.9 \times 10^{-4}$
Also, mass of wire, $m=A l \sigma$
Mass per unit length, $\mu=\frac{m}{I}=A \sigma$
Fundamental frequency in the string
$f=\frac{1}{2 l} \sqrt{\frac{T}{\mu}}=\frac{1}{2 l} \sqrt{\frac{T}{\sigma A}}=\frac{1}{2 \times 1} \sqrt{\frac{9 \times 10^{9} \times 4.9 \times 10^{-4}}{9 \times 10^{3}}}$
$=\frac{1}{2} \sqrt{49 \times 10^{9-4-3}}=\frac{1}{2} \times 70=35 \mathrm{~Hz}$