If $\operatorname{Cos} \frac{X}{2}=\frac{12}{13}$ and $X$ lies in Quadrant $I$, find the values of
(i) $\sin x$
(ii) $\cos x$
(iii) $\cot x$
Given: $\cos \frac{X}{2}=\frac{12}{13}$ and $\mathrm{x}$ lies in Quadrant $\mathrm{I}$ i.e, All the trigonometric ratios are positive in I quadrant
To Find: (i) $\sin x$ ii) $\cos x$ iii) $\cot x$
(i) $\sin x$
Formula used:
We have, $\operatorname{Sin} x=\sqrt{1-\cos ^{2} x}$
We know that, $\cos \frac{x}{2}=\sqrt{\frac{1+\cos x}{2}}(\because \cos x$ is positive in I quadrant)
$\Rightarrow 2 \cos ^{2} \frac{x}{2}-1=\cos x$
$\Rightarrow 2 \times\left(\frac{12}{13}\right)^{2}-1=\cos x$
$\Rightarrow 2 \times\left(\frac{144}{169}\right)-1=\cos x$
$\Rightarrow \cos x=\frac{119}{169}$
Since, $\operatorname{Sin} x=\sqrt{1-\cos ^{2} x}$
$\Rightarrow \operatorname{Sin} x=\sqrt{1-\left(\frac{119}{169}\right)^{2}}$
$\Rightarrow \operatorname{Sin} x=\frac{120}{169}$
Hence, we have $\operatorname{Sin} x=\frac{120}{169}$.
ii) $\cos x$
Formula used:
We know that, $\cos \frac{x}{2}=\sqrt{\frac{1+\cos x}{2}}(\because \cos x$ is positive in I quadrant)
$\Rightarrow 2 \cos ^{2} \frac{x}{2}-1=\cos x$
$\Rightarrow 2 \times\left(\frac{12}{13}\right)^{2}-1=\cos x$
$\Rightarrow 2 \times\left(\frac{144}{169}\right)-1=\cos x$
$\Rightarrow \cos x=\frac{119}{169}$
iii) $\cot x$
Formula used:
$\cot x=\frac{\cos x}{\sin x}$
$\cot x=\frac{\frac{119}{169}}{\frac{120}{169}}=\frac{119}{169} \times \frac{169}{120}=\frac{119}{120}$
Hence, we have $\cot x=\frac{119}{120}$