Differentiate $\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ with respect to $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$, if $-1
Let $u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$ and $v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$.
We need to differentiate $u$ with respect to $v$ that is find $\frac{\text { du }}{\text { dv }}$.
We have $u=\sin ^{-1}\left(\frac{2 x}{1+x^{2}}\right)$
By substituting $x=\tan \theta$, we have
$\mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+(\tan \theta)^{2}}\right)$
$\Rightarrow \mathrm{u}=\sin ^{-1}\left(\frac{2 \tan \theta}{1+\tan ^{2} \theta}\right)$
$\Rightarrow u=\sin ^{-1}\left(\frac{2 \tan \theta}{\sec ^{2} \theta}\right)\left[\because \sec ^{2} \theta-\tan ^{2} \theta=1\right]$
$\Rightarrow u=\sin ^{-1}\left(\frac{2 \times \frac{\sin \theta}{\cos \theta}}{\frac{1}{\cos ^{2} \theta}}\right)$
$\Rightarrow u=\sin ^{-1}\left(2 \times \frac{\sin \theta}{\cos \theta} \times \cos ^{2} \theta\right)$
$\Rightarrow u=\sin ^{-1}(2 \sin \theta \cos \theta)$
But, $\sin 2 \theta=2 \sin \theta \cos \theta$
$\Rightarrow u=\sin ^{-1}(\sin 2 \theta)$
Given $-1 However, $x=\tan \theta$ $\Rightarrow \tan \theta \in(-1,1)$ $\Rightarrow \theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right)$ $\Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Hence, $u=\sin ^{-1}(\sin 2 \theta)=2 \theta$ $\Rightarrow u=2 \tan ^{-1} x$ On differentiating $u$ with respect to $x$, we get $\frac{\mathrm{du}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left(2 \tan ^{-1} \mathrm{x}\right)$ $\Rightarrow \frac{\mathrm{du}}{\mathrm{dx}}=2 \frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)$ We know $\frac{\mathrm{d}}{\mathrm{dx}}\left(\tan ^{-1} \mathrm{x}\right)=\frac{1}{1+\mathrm{x}^{2}}$ $\Rightarrow \frac{d u}{d x}=2 \times \frac{1}{1+x^{2}}$ $\therefore \frac{d u}{d x}=\frac{2}{1+x^{2}}$ Now, we have $v=\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ By substituting $x=\tan \theta$, we have $v=\tan ^{-1}\left(\frac{2 \tan \theta}{1-(\tan \theta)^{2}}\right)$ $\Rightarrow v=\tan ^{-1}\left(\frac{2 \tan \theta}{1-\tan ^{2} \theta}\right)$ But, $\tan 2 \theta=\frac{2 \tan \theta}{1-\tan ^{2} \theta}$ $\Rightarrow \mathrm{v}=\tan ^{-1}(\tan 2 \theta)$ However, $\theta \in\left(-\frac{\pi}{4}, \frac{\pi}{4}\right) \Rightarrow 2 \theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ Hence, $v=\tan ^{-1}(\tan 2 \theta)=2 \theta$ $\Rightarrow \mathrm{v}=2 \tan ^{-1} \mathrm{x}$ On differentiating $v$ with respect to $x$, we get $\frac{d v}{d x}=\frac{d}{d x}\left(2 \tan ^{-1} x\right)$ $\Rightarrow \frac{d v}{d x}=2 \frac{d}{d x}\left(\tan ^{-1} x\right)$ We know $\frac{d}{d x}\left(\tan ^{-1} x\right)=\frac{1}{1+x^{2}}$ $\Rightarrow \frac{\mathrm{dv}}{\mathrm{dx}}=2 \times \frac{1}{1+\mathrm{x}^{2}}$ $\therefore \frac{\mathrm{dv}}{\mathrm{dx}}=\frac{2}{1+\mathrm{x}^{2}}$ We have $\frac{d u}{d v}=\frac{\frac{d u}{d v}}{\frac{d x}{d x}}$ $\Rightarrow \frac{d u}{d v}=\frac{\frac{2}{1+x^{2}}}{\frac{2}{1+x^{2}}}$ $\Rightarrow \frac{d u}{d v}=\frac{2}{1+x^{2}} \times \frac{1+x^{2}}{2}$ $\therefore \frac{d u}{d v}=1$ Thus, $\frac{\mathrm{du}}{\mathrm{dv}}=1$