Solve this

Question:

$16 x^{2}=24 x+1$

 

Solution:

Given :

$16 x^{2}=24 x+1$

$\Rightarrow 16 x^{2}-24 x-1=0$

On comparing it with $a x^{2}+b x+c=0$

$a=16, b=-24$ and $c=-1$

Discriminant $D$ is given by:

$D=\left(b^{2}-4 a c\right)$

$=(-24)^{2}-4 \times 16 \times(-1)$

$=576+(64)$

$=640>0$

Hence, the roots of the equation are real,

Roots $\alpha$ and $\beta$ are given by :

$\alpha=\frac{-b+\sqrt{D}}{2 a}=\frac{-(-24)+\sqrt{640}}{2 \times 16}=\frac{24+8 \sqrt{10}}{32}=\frac{8(3+\sqrt{10})}{32}=\frac{(3+\sqrt{10})}{4}$

$\beta=\frac{-b-\sqrt{D}}{2 a}=\frac{-(-24)-\sqrt{640}}{2 \times 16}=\frac{24-8 \sqrt{10}}{32}=\frac{8(3-\sqrt{10})}{32}=\frac{(3-\sqrt{10})}{4}$

Thus, the roots of the equation are $\frac{(3+\sqrt{10})}{4}$ and $\frac{(3-\sqrt{10})}{4}$.

 

Leave a comment