Question:
An $\mathrm{AC}$ current is given by $\mathrm{I}=\mathrm{I}_{1} \sin \omega \mathrm{t}+\mathrm{I}_{2} \cos \omega \mathrm{t}$.
A hot wire ammeter will give a reading :
Correct Option: 2,
Solution:
$\mathrm{I}=\mathrm{I}_{1} \sin \omega \mathrm{t}+\mathrm{I}_{2} \cos \omega \mathrm{t}$
$\therefore I_{0}=\sqrt{I_{1}^{2}+I_{2}^{2}}$
$\therefore I_{r m s}=\frac{I_{0}}{\sqrt{2}}=\sqrt{\frac{I_{1}^{2}+I_{2}^{2}}{2}}$