Question:
$25 x^{2}-30 x+11=0$
Solution:
Given:
$25 x^{2}-30 x+11=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
$\Rightarrow x=\frac{-(-30) \pm \sqrt{(-30)^{2}-(4 \times 25 \times 11)}}{2 \times 25}$
$\Rightarrow x=\frac{30 \pm \sqrt{900-1100}}{50}$
$\Rightarrow x=\frac{30 \pm \sqrt{-200}}{50}$
$\Rightarrow x=\frac{30 \pm 10 \sqrt{2} i}{50}$
$\Rightarrow x=-\frac{30}{50} \pm \frac{10 \sqrt{2}}{50} i$
Ans: $x=-\frac{3}{5}+\frac{\sqrt{2}}{5} i$ and $x=-\frac{3}{5}-\frac{\sqrt{2}}{5} i$