Solve this

Question:

If $A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$ and $A=A^{T}$, then

(a) $x=0, y=5$

(b) $x+y=5$

(c) $x=y$

(d) none of these

Solution:

(c) $x=y$

Here,

$A=\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]$

$A^{T}=\left[\begin{array}{ll}5 & y \\ x & 0\end{array}\right]$

Now,

$A=A^{T}$

The corresponding elements of two equal matrices are equal.

$\therefore\left[\begin{array}{ll}5 & x \\ y & 0\end{array}\right]=\left[\begin{array}{ll}5 & y \\ x & 0\end{array}\right]$

$\Rightarrow x=y$

Leave a comment