If $\mathrm{y}=\sin ^{-1}\left(6 \mathrm{x} \sqrt{1-9 \mathrm{x}^{2}}\right),-\frac{1}{3 \sqrt{2}}<\mathrm{x}<\frac{1}{3 \sqrt{2}}$, then find $\frac{\mathrm{dy}}{\mathrm{dx}}$.
$y=\sin ^{-1}\left\{6 x \sqrt{1-9 x^{2}}\right\}$
$y=\sin ^{-1}\left\{2 \times 3 x \sqrt{1-(3 x)^{2}}\right\}$
let $3 x=\cos \theta$
$y=\sin ^{-1}\left\{2 \times \sin \theta \sqrt{1-\cos ^{2} \theta}\right\}$
Using $\sin ^{2} \theta+\cos ^{2} \theta=1$
$y=\sin ^{-1}\{2 \times \sin \theta \cos \theta\}$
Using $2 \sin \theta \cos \theta=\sin 2 \theta$
$y=\sin ^{-1}(\sin 2 \theta)$
Considering the limits,
$-\frac{1}{3 \sqrt{2}} $-\frac{1}{\sqrt{2}}<3 x<\frac{1}{\sqrt{2}}$ $-\frac{1}{\sqrt{2}}<\cos \theta<\frac{1}{\sqrt{2}}$ $-\frac{\pi}{4}<\theta<\frac{\pi}{4}$ $-\frac{\pi}{2}<2 \theta<\frac{\pi}{2}$ For $0<2 \theta<\frac{\pi}{2}$ Now, $y=\sin ^{-1}(\sin 2 \theta)$ $y=2 \theta$ $y=2 \cos ^{-1} x$ Differentiating w.r.t $\mathrm{x}$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=-\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$ For $-\frac{\pi}{2}<2 \theta<0$ Now, $y=\sin ^{-1}(\sin 2 \theta)$ $y=-2 \theta$ $y=-2 \cos ^{-1} x$ Differentiating w.r.t $x$, we get $\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{\sqrt{1-\mathrm{x}^{2}}}$