Question:
$17 x^{2}-8 x+1=0$
Solution:
Given:
$17 x^{2}-8 x+1=0$
Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:
$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$
$\Rightarrow x=\frac{-(-8) \pm \sqrt{(-8)^{2}-(4 \times 17 \times 1)}}{2 \times 17}$
$x=\frac{8 \pm \sqrt{64-68}}{34}$
$\Rightarrow x=\frac{8 \pm \sqrt{-4}}{34}$
$\Rightarrow x=\frac{8 \pm 2 i}{34}$
$\Rightarrow x=\frac{8}{34} \pm \frac{2}{34} i$
Ans: $x=\frac{4}{17}+\frac{1}{17} i$ and $x=\frac{4}{17}-\frac{1}{17} i$