Solve this

Question:

$17 x^{2}-8 x+1=0$

 

Solution:

Given:

$17 x^{2}-8 x+1=0$

Solution of a general quadratic equation $a x^{2}+b x+c=0$ is given by:

$x=\frac{-b \pm \sqrt{\left(b^{2}-4 a c\right)}}{2 a}$

$\Rightarrow x=\frac{-(-8) \pm \sqrt{(-8)^{2}-(4 \times 17 \times 1)}}{2 \times 17}$

$x=\frac{8 \pm \sqrt{64-68}}{34}$

$\Rightarrow x=\frac{8 \pm \sqrt{-4}}{34}$

$\Rightarrow x=\frac{8 \pm 2 i}{34}$

$\Rightarrow x=\frac{8}{34} \pm \frac{2}{34} i$

Ans: $x=\frac{4}{17}+\frac{1}{17} i$ and $x=\frac{4}{17}-\frac{1}{17} i$

 

 

Leave a comment