Let $f(x)=(x+|x|)|x|$. Then, for all $x$
(a) f is continuous
(b) f is differentiable for some x
(c) f' is continuous
(d) f'' is continuous
(a) f is continuous
(c) f' is continuous
We have,
$f(x)=(x+|x|)|x|$
$=x|x|+(|x|)^{2}$
$=x|x|+x^{2}$
$f(x)= \begin{cases}2 x^{2} & x \geq 0 \\ 0 & x<0\end{cases}$
To check continuity of $f(x)$ at $x=0$
$(\mathrm{LHL}$ at $x=0)=\lim _{x \rightarrow 0^{-}} f(x)$
$=\lim _{x \rightarrow 0^{+}} 2 x^{2}$
$=0$
And $f(0)=0$
Here, $\mathrm{LHL}=\mathrm{RHL}=f(0)$
Therefore, $f(x)$ is continuous at $x=0$
Hence, $f(x)$ is continuous everywhere.
To check the differentiability of $f(x)$ at $x=0$
$(\mathrm{LHD}$ at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{x \rightarrow 0^{-}} \frac{0-0}{x}=0$
$(\mathrm{RHD}$ at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{x \rightarrow 0^{-}} \frac{2 x^{2}-0}{x}$
$=\lim _{x \rightarrow 0^{-}} \frac{2 x^{2}-0}{x}$
$=\lim _{x \rightarrow 0^{-}} 2 x=0$
$\mathrm{LHD}=\mathrm{RHD}$
Therefore, $f(x)$ is derivative at $x=0$
Hence, $f(x)$ is differentiable everywhere.
$f^{\prime}(x)=\left\{\begin{array}{lc}4 x & x \geq 0 \\ 0 & x<0\end{array}\right.$
To check continuity of $f^{\prime}(x)$ at $x=0$
$(\mathrm{LHL}$ at $x=0)=\lim _{x \rightarrow 0^{-}} f^{\prime}(x)$
$=\lim _{x \rightarrow 0^{-}} 0$
$=0$
$(\mathrm{RHL}$ at $x=0)=\lim _{x \rightarrow 0^{+}} f^{\prime}(x)$
$=\lim _{x \rightarrow 0^{+}} 4 x$
$=0$
And $f^{\prime}(0)=0$
Here, $\mathrm{LHL}=\mathrm{RHL}=f^{\prime}(0)$
Therefore, $f^{\prime}(x)$ is continuous at $x=0$
Hence, $f^{\prime}(x)$ is continuous everywhere.
$f^{\prime \prime}(x)= \begin{cases}4 & x \geq 0 \\ 0 & x<0\end{cases}$
To check continuity of $f^{\prime \prime}(x)$ at $x=0$
$(\mathrm{LHL}$ at $x=0)=\lim _{x \rightarrow 0^{-}} f^{\prime \prime}(x)$
$=\lim _{x \rightarrow 0^{-}} 0$
$=0$
$(\mathrm{RHL}$ at $x=0)=\lim _{x \rightarrow 0^{+}} f^{\prime \prime}(x)$
$=\lim _{x \rightarrow 0^{+}} 4$
$=4$
Therefore, LHL $\neq$ RHL
Therefore, $f^{\prime \prime}(x)$ is not continuous at $x=0$
Hence, $f^{\prime \prime}(x)$ is not continuous everywhere.