If $\operatorname{Sin} X=\frac{-1}{2}$ and $X$ lies in Quadrant IV, find the values of
(i) $\operatorname{Sin} \frac{X}{2}$
(ii) $\operatorname{Cos} \frac{X}{2}$
(iii) $\tan \frac{X}{2}$
Given: $\sin x=\frac{-1}{2}$ and $x$ lies in Quadrant IV.
To Find: i) $\sin \frac{x}{2}$ ii) $\cos \frac{x}{2}$ iii) $\tan \frac{x}{2}$
Now, since $\sin x=\frac{-1}{2}$
We know that $\cos x=\pm \sqrt{1-\sin ^{2} x}$
$\cos x=\pm \sqrt{1-\left(\frac{-1}{2}\right)^{2}}$
$\cos x=\pm \sqrt{1-\frac{1}{4}}$
$\cos x=\pm \sqrt{\frac{3}{4}}=\pm \frac{\sqrt{3}}{2}$
since $\cos x$ is positive in IV quadrant, hence $\cos x=\frac{\sqrt{3}}{2}$
i) $\sin \frac{x}{2}$
Formula used:
$\sin \frac{x}{2}=\pm \sqrt{\frac{1-\cos x}{2}}$
Now, $\sin \frac{x}{2}=\pm \sqrt{\frac{1-\left(\frac{\sqrt{3}}{2}\right)}{2}}=\pm \sqrt{\frac{\frac{2-\sqrt{3}}{2}}{2}}=\pm \sqrt{\frac{2-\sqrt{3}}{4}}=\pm \frac{\sqrt{2-\sqrt{3}}}{2}$
Since $\sin x$ is negative in IV quadrant, hence $\sin \frac{x}{2}=-\frac{\sqrt{2-\sqrt{3}}}{2}$
ii) $\cos \frac{x}{2}$
Formula used:
$\cos \frac{x}{2}=\pm \sqrt{\frac{1+\cos x}{2}}$
now, $\cos \frac{x}{2}=\pm \sqrt{\frac{1+\left(\frac{\sqrt{3}}{2}\right)}{2}}=\pm \sqrt{\frac{\frac{2+\sqrt{3}}{2}}{2}}=\pm \frac{\sqrt{2+\sqrt{3}}}{2}$
since cos $x$ is positive in IV quadrant, hence $\cos \frac{x}{2}=\frac{\sqrt{2+\sqrt{3}}}{2}$
iii) $\tan \frac{x}{2}$
Formula used:
$\tan x=\frac{\sin x}{\cos x}$