Question:
Let $f: R \rightarrow R: f(x)=10 x+7$. Find the function $g: R \rightarrow R: g \circ f=f \circ g=I_{g}$
Solution:
To find: the function $g: R \rightarrow R: g \circ f=f \circ g=I_{g}$
Formula used: (i) $g$ o $f=g(f(x))$
(ii) $f \circ g=f(g(x))$
Given: $f: R \rightarrow R: f(x)=10 x+7$
We have,
$f(x)=10 x+7$
Let $f(x)=y$
$\Rightarrow y=10 x+7$
$\Rightarrow y-7=10 x$
$\Rightarrow x=\frac{y-7}{10}$
Let $g(y)=\frac{y-7}{10}$ where $g: R \rightarrow R$
$g \circ f=g(f(x))=g(10 x+7)=\frac{(10 x+7)-7}{10}$
$=x$
$=\mathrm{I}_{\mathrm{g}}$
$f \circ g=f(g(x))=f\left(\frac{x-7}{10}\right)$
$=10\left(\frac{x-7}{10}\right)+7$
$=x-7+7$
$=x$
Clearly g o $f=f \circ g$ $=I_{g}$ Ans $) \cdot g(x)=\frac{x-7}{10}$