If $\sin \theta=\frac{12}{13}$ then evaluate $\left(\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}\right)$
Given: $\sin \theta=\frac{12}{13}$
Since, $\sin \theta=\frac{P}{H}$
$\Rightarrow P=12$ and $H=13$
Using Pythagoras theorem,
$P^{2}+B^{2}=H^{2}$
$\Rightarrow 12^{2}+B^{2}=13^{2}$
$\Rightarrow B^{2}=169-144$
$\Rightarrow B^{2}=25$
$\Rightarrow B=5$
Therefore,
$\cos \theta=\frac{B}{H}=\frac{5}{13}$
$\cos \theta=\frac{B}{H}=\frac{5}{13}$
Now,
$\left(\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}\right)=\left(\frac{2\left(\frac{12}{13}\right)-3\left(\frac{5}{13}\right)}{4\left(\frac{12}{13}\right)-9\left(\frac{5}{13}\right)}\right)$
$=\left(\frac{\frac{24}{13}-\frac{15}{13}}{\frac{48}{13}-\frac{45}{13}}\right)$
$=\left(\frac{24-15}{48-45}\right)$
$=\frac{9}{3}$
$=3$
Hence, $\left(\frac{2 \sin \theta-3 \cos \theta}{4 \sin \theta-9 \cos \theta}\right)=3$.