Question:
If $1+4+7+10+\ldots+x=287$, find the value of $x$.
Solution:
$s_{n}=\frac{n}{2}[2 a+(n-1) d]$
$a=1, d=4-1=3$ and $s_{n}=287$
$287=\frac{n}{2}[2+(n-1) 3]$
$\Rightarrow 574=n(2+3 n-3)$
$\Rightarrow 3 n^{2}-n-574=0$
Using $n=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$n=\frac{-(-1) \pm \sqrt{(-1)^{2}-4(3)(-574)}}{2(3)}$
$\Rightarrow n=\frac{1 \pm \sqrt{1+6888}}{6}$
$\Rightarrow n=14, \frac{-41}{3}$
Number of terms can not be negative
So, $n=14$
$n=14$
$s_{n}=\frac{n}{2}[a+l]$
$287=\frac{14}{2}[1+x]$
$\Rightarrow x=40$