$x+y+z=0$
$x-y-5 z=0$
$x+2 y+4 z=0$
Here,
$x+y+z=0$ ....(1)
$x-y-5 z=0$ ....(2)
$x+2 y+4 z=0$ ....(3)
The given system of homogeneous equations can be written in matrix form as follows:
$\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -5 \\ 1 & 2 & 4\end{array}\right]\left[\begin{array}{l}x \\ y \\ z\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$A X=O$
Here,
$A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -5 \\ 1 & 2 & 4\end{array}\right], X=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ and $O=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
Now,
$|A|=\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -1 & -5 \\ 1 & 2 & 4\end{array}\right|$
$=1(-4+10)-1(4+5)+1(2+1)$
$=6-9+3$
$=0$
$\therefore|A| \neq 0$
So, the given system of homogeneous equations has non-trivial solution.
Substituting $z=k$ in eq. (1) and eq, (2), we get
$x+y=-k$ and $x-y=5 k$
$A X=B$
Here,
$\mathrm{A}=\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right], \mathrm{X}=\left[\begin{array}{l}x \\ y\end{array}\right]$ and $\mathrm{B}=\left[\begin{array}{c}-k \\ 5 k\end{array}\right]$
$\Rightarrow\left[\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}x \\ y\end{array}\right]=\left[\begin{array}{c}-k \\ 5 k\end{array}\right]$
$\begin{aligned}|A|=&\left|\begin{array}{cc}1 & 1 \\ 1 & -1\end{array}\right| \\ &=(1 \times-1-1 \times 1) \\ &=-2 \end{aligned}$
So, $A^{-1}$ exists.
We have
$\operatorname{adj} A=\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
$A^{-1}=\frac{1}{|A|}$ adj $A$
$\Rightarrow A^{-1}=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]$
$X=A^{-1} B$
$\Rightarrow\left[\begin{array}{l}x \\ y\end{array}\right]=\frac{1}{-2}\left[\begin{array}{cc}-1 & -1 \\ -1 & 1\end{array}\right]\left[\begin{array}{c}-k \\ 5 k\end{array}\right]$
$=\frac{1}{-2}\left[\begin{array}{l}k-5 k \\ k+5 k\end{array}\right]$
Thus, $x=2 k, y=-3 k$ and $z=k$ (where $k$ is any real number) satisfy the given system of equations.