Solve this

Question:

If $\tan \theta=\frac{a}{b}$, then $\frac{(\cos \theta+\sin \theta)}{(\cos \theta-\sin \theta)}=?$

(a) $\frac{a+b}{a-b}$

(b) $\frac{a-b}{a+b}$

(c) $\frac{b+a}{b-a}$

(d) $\frac{b-a}{b+a}$

 

Solution:

(c) $\frac{b+a}{b-a}$

Given: $\tan \theta=\frac{a}{b}$

Now, $\frac{(\cos \theta+\sin \theta)}{(\cos \theta-\sin \theta)}$

$=\frac{(1+\tan \theta)}{(1-\tan \theta)} \quad[$ Dividing the numerator and denominator by $\cos \theta]$

$=\frac{\left(1+\frac{a}{b}\right)}{\left(1-\frac{a}{b}\right)}$

$=\frac{\left(\frac{b+a}{b}\right)}{\left(\frac{b-a}{b}\right)}$

$=\frac{(b+a)}{(b-a)}$

 

Leave a comment