solve this

Question:

If $x=3+2 \sqrt{2}$, check whether $x+\frac{1}{x}$ is rational or irrational.

 

Solution:

$x=3+2 \sqrt{2} \quad \ldots .(1)$

$\Rightarrow \frac{1}{x}=\frac{1}{3+2 \sqrt{2}}$

$\Rightarrow \frac{1}{x}=\frac{1}{3+2 \sqrt{2}} \times \frac{3-2 \sqrt{2}}{3-2 \sqrt{2}}$

$\Rightarrow \frac{1}{x}=\frac{3-2 \sqrt{2}}{3^{2}-(2 \sqrt{2})^{2}}$

$\Rightarrow \frac{1}{x}=\frac{3-2 \sqrt{2}}{9-8}$

$\Rightarrow \frac{1}{a}=3-2 \sqrt{2}$......(2)

Adding (1) and (2), we get

$x+\frac{1}{x}=3+2 \sqrt{2}+3-2 \sqrt{2}=6$, which is a rational number

Thus, $x+\frac{1}{x}$ is rational.

 

Leave a comment