Solve this

Question:

$a b x^{2}+\left(b^{2}-a c\right) x-b c=0$

 

Solution:

Given:

$a b x^{2}+\left(b^{2}-a c\right) x-b c=0$

$\Rightarrow a b x^{2}+b^{2} x-a c x-b c=0$

$\Rightarrow b x(a x+b)-c(a x+b)=0$

$\Rightarrow(b x-c)(a x+b)=0$

$\Rightarrow b x-c=0$ or $a x+b=0$

$\Rightarrow x=\frac{c}{b}$ or $x=\frac{-b}{a}$

Hence, the roots of the equation are $\frac{c}{b}$ and $\frac{-b}{a}$.

 

Leave a comment