Solve this

Question:

$\lim _{x \rightarrow 2}\left(\sum_{n=1}^{9} \frac{x}{n(n+1) x^{2}+2(2 n+1) x+4}\right)$ is equal to :

  1. $\frac{9}{44}$

  2. $\frac{5}{24}$

  3. $\frac{1}{5}$

  4. $\frac{7}{36}$


Correct Option: 1

Solution:

$S=\lim _{x \rightarrow 2} \sum_{n=1}^{9} \frac{x}{n(n+1) x^{2}+2(2 n+1) x+4}$

$\mathrm{S}=\sum_{\mathrm{n}=1}^{9} \frac{2}{4\left(\mathrm{n}^{2}+3 \mathrm{n}+2\right)}=\frac{1}{2} \sum_{\mathrm{n}=1}^{9}\left(\frac{1}{\mathrm{n}+1}-\frac{1}{\mathrm{n}+2}\right)$

$\mathrm{S}=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{11}\right)=\frac{9}{44}$

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now