Solve this

Question:

Find the sum $\left(\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}+\mathrm{i}^{\mathrm{n}+2}+\mathrm{i}^{\mathrm{n}+3}\right)$, where $\mathrm{n} \mathrm{N}$.

 

Solution:

We have $\mathrm{i}^{\mathrm{n}}+\mathrm{i}^{\mathrm{n}+1}+\mathrm{i}^{\mathrm{n}+2}+\mathrm{i}^{\mathrm{n}+3}$

$=i^{n}+i^{n} \cdot i+i^{n} \cdot i^{2}+i^{n} \cdot i^{3}$

$=i^{n}\left(1+i+i^{2}+i^{3}\right)$

$=i^{n}(1+i-1-i)$

$=i^{n}(0)=0$

 

Leave a comment