If $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$, then $f(x)$ is
(a) continuous on $[-1,1]$ and differentiable on $(-1,1)$
(b) continuous on $[-1,1]$ and differentiable on $(-1,0) \cup(0,1)$
(c) continuous and differentiable on $[-1,1]$
(b) continuous on $[-1,1]$ and differentiable on $(-1,0) \cup(0,1)$
We have,
$f(x)=\sqrt{1-\sqrt{1-x^{2}}}$
Here, function will be defined for those values of $x$ for which
$1-x^{2} \geq 0$
$\Rightarrow 1 \geq x^{2}$
$\Rightarrow x^{2} \leq 1$
$\Rightarrow|x| \leq 1$
$\Rightarrow-1 \leq x \leq 1$
Therefore, function is continuous in $[-1,1]$
Now, we need to check the differentiability of $f(x)=\sqrt{1-\sqrt{1-x^{2}}}$ in the interval $(-1,1)$.
Now, we will check the differentiability at $x=0$
$(\mathrm{LHD}$ at $x=0)=\lim _{x \rightarrow 0^{-}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1-\sqrt{1-x^{2}}-0}}{x}$
$=\lim _{x \rightarrow 0^{-}} \frac{\sqrt{1-\sqrt{1-x^{2}}}}{x}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-(0-h)^{2}}}}{0-h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^{2}}}}{-h}=-\infty$
$(\mathrm{RHD}$ at $x=0)=\lim _{x \rightarrow 0^{+}} \frac{f(x)-f(0)}{x-0}$
$=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1-\sqrt{1-x^{2}}}-0}{x}$
$=\lim _{x \rightarrow 0^{+}} \frac{\sqrt{1-\sqrt{1-x^{2}}}}{x}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-(0+h)^{2}}}}{0+h}$
$=\lim _{h \rightarrow 0} \frac{\sqrt{1-\sqrt{1-h^{2}}}}{h}=\infty$
So, the function is not differentiable at $x=0$.