Let $f: R \rightarrow R: f(x)=(2 x+1)$ and $g: R \rightarrow R: g(x)=\left(x^{2}-2\right)$
Write down the formulae for
(i) (g o f)
(ii) (f o g)
(iii) (f o f)
(iv) (g o g)
(i) g o f
To find: g o f
Formula used: g o f = g(f(x))
Given: (i) f : R → R : f(x) = (2x + 1)
(ii) $g: R \rightarrow R: g(x)=\left(x^{2}-2\right)$
Solution: We have,
$g \circ f=g(f(x))=g(2 x+1)=\left[(2 x+1)^{2}-2\right]$
$\Rightarrow 4 x^{2}+4 x+1-2$
$\Rightarrow 4 x^{2}+4 x-1$
Ans). $g \circ f(x)=4 x^{2}+4 x-1$
(ii) f o g
To find: f o g
Formula used: f o g = f(g(x))
Given: (i) f : R → R : f(x) = (2x + 1)
(ii) $g: R \rightarrow R: g(x)=\left(x^{2}-2\right)$
Solution: We have,
$f \circ g=f(g(x))=f\left(x^{2}-2\right)=\left[2\left(x^{2}-2\right)+1\right]$
$\Rightarrow 2 x^{2}-4+1$
$\Rightarrow 2 x^{2}-3$
Ans). $f \circ g(x)=2 x^{2}-3$
(iii) $f$ o $f$
To find: f o f
Formula used: f o f = f(f(x))
Given: (i) f : R → R : f(x) = (2x + 1)
Solution: We have,
$f \circ f=f(f(x))=f(2 x+1)=[2(2 x+1)+1]$
$\Rightarrow 4 x+2+1$
$\Rightarrow 4 x+3$
Ans). $f$ of $f(x)=4 x+3$
(iv) $\mathrm{g} \circ \mathrm{g}$
To find: g o g
Formula used: g o g = g(g(x))
Given: (i) $g: R \rightarrow R: g(x)=\left(x^{2}-2\right)$
Solution: We have,
$g \circ g=g(g(x))=g\left(x^{2}-2\right)=\left[\left(x^{2}-2\right)^{2}-2\right]$
$\Rightarrow x^{4}-4 x^{2}+4-2$
$\Rightarrow x^{4}-4 x^{2}+2$
Ans). $g \circ g(x)=x^{4}-4 x^{2}+2$