Solve this

Question:

The equation arg $\left(\frac{z-1}{z+1}\right)=\frac{\pi}{4}$ represents a circle with:

  1. (1) centre at $(0,-1)$ and radius $\sqrt{2}$

  2. (2) centre at $(0,1)$ and radius $\sqrt{2}$

  3. (3) centre at $(0,0)$ and radius $\sqrt{2}$

  4. (4) centre at $(0,1)$ and radius 2


Correct Option: , 2

Solution:

In $\triangle \mathrm{OAC}$

$\sin \left(\frac{\pi}{4}\right)=\frac{1}{\mathrm{AC}}$

$\Rightarrow \mathrm{AC}=\sqrt{2}$

Also, $\tan \frac{\pi}{4}=\frac{\mathrm{OA}}{\mathrm{OC}}=\frac{1}{\mathrm{OC}}$

$\Rightarrow \mathrm{OC}=1$

$\therefore$ centre $(0,1) ;$ Radius $=\sqrt{2}$

Leave a comment