Solve this

Question:

If the matrix $A=\left[\begin{array}{rrr}5 & 2 & x \\ y & z & -3 \\ 4 & t & -7\end{array}\right]$ is a symmetric matrix, find $x, y, z$ and $t$.

Solution:

Given : $A=\left[\begin{array}{ccc}5 & 2 & x \\ y & z & -3 \\ 4 & t & -7\end{array}\right]$

$\Rightarrow A^{T}=\left[\begin{array}{ccc}5 & y & 4 \\ 2 & z & t \\ x & -3 & -7\end{array}\right]$

Since $A$ is a symmetric matrix, $A^{T}=A$.

$\Rightarrow\left[\begin{array}{ccc}5 & y & 4 \\ 2 & z & t \\ x & -3 & -7\end{array}\right]=\left[\begin{array}{ccc}5 & 2 & x \\ y & z & -3 \\ 4 & t & -7\end{array}\right]$

$\therefore \quad x=4$

$y=2$

$z=z$

$t=-3$

Hence, $x=4, y=2, t=-3$ and $z$ can have any value.

 

Leave a comment