Solve this

Question:

If $f(x)=\frac{x+1}{x-1}$ then show that $f\{f(x)\}=x$.

 

Solution:

Given: $f(x)=\frac{x+1}{x-1}$

Need to prove: f{f(x)} = x

Now replacing x by f(x) we get,

$f\{f(x)\}=\frac{f(x)+1}{f(x)-1}$

$\Rightarrow f\{f(x)\}=\frac{\frac{x+1}{x-1}+1}{\frac{x+1}{x-1}-1}$

$\Rightarrow f\{f(x)\}=\frac{x+1+x-1}{x+1-x+1}$

$\Rightarrow f\{f(x)\}=\frac{2 x}{2}$

$\Rightarrow f\{f(x)\}=x$ [Proved]

 

 

Leave a comment