If $\left(\frac{1-i}{1+i}\right)^{100}=(a+i b)$, find the values of $a$ and $b$.
Given: $a+i b=\left(\frac{1-i}{1+i}\right)^{100}$
Consider the given equation,
$a+i b=\left(\frac{1-i}{1+i}\right)^{100}$
Now, we rationalize
$=\left(\frac{1-i}{1+i} \times \frac{1-i}{1-i}\right)^{100}$
[Here, we multiply and divide by the conjugate of 1 + i]
$=\left(\frac{(1-i)^{2}}{(1+i)(1-i)}\right)^{100}$
$=\left(\frac{1+i^{2}-2 i}{(1+i)(1-i)}\right)^{100}$
Using $(a+b)(a-b)=\left(a^{2}-b^{2}\right)$
$=\left(\frac{1+(-1)-2 i}{(1)^{2}-(i)^{2}}\right)^{100}$
$=\left(\frac{-2 i}{1-i^{2}}\right)^{100}$
$=\left(\frac{-2 i}{1-(-1)}\right)^{100}\left[\because \mathrm{i}^{2}=-1\right]$
$=\left(\frac{-2 i}{2}\right)^{100}$
$=(-i)^{100}$
$=\left[(-i)^{4}\right]^{25}$
$=\left(i^{4}\right)^{25}$
$=(1)^{25}$
$\left[\because i^{4}=j^{2} \times i^{2}=-1 \times-1=1\right]$
$(a+i b)=1+0 i$
On comparing both the sides, we get
a = 1 and b = 0
Hence, the value of a is 1 and b is 0