Solve this

Question:

If $A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]$ is identity matrix, then write the value of $\alpha$.

Solution:

Here,

$A=\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=I$

$\Rightarrow\left[\begin{array}{cc}\cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$

The corresponding elements of equal matrices are equal.

$\therefore \cos \alpha=1$

$\Rightarrow \alpha=0^{\circ}$

Leave a comment