$\sqrt{1+4 \sqrt{-3}}$
Let, $(a+i b)^{2}=1+4^{\sqrt{3}} i$
Now using, $(a+b)^{2}=a^{2}+b^{2}+2 a b$
$\Rightarrow a^{2}+(b i)^{2}+2 a b i=1+4^{\sqrt{3}} i$
Since $i^{2}=-1$
$\Rightarrow a^{2}-b^{2}+2 a b i=1+4^{\sqrt{3}} i$
Now, separating real and complex parts, we get
$\Rightarrow a^{2}-b^{2}=1 \ldots \ldots \ldots \ldots \ldots$ eq. 1
$\Rightarrow 2 \mathrm{ab}=4^{\sqrt{3}} \ldots \ldots . \mathrm{eq} .2$
$\Rightarrow a=\frac{2 \sqrt{3}}{b}$
Now, using the value of a in eq.1, we get
$\Rightarrow\left(\frac{2 \sqrt{3}}{b}\right)^{2}-b^{2}=1$
$\Rightarrow 12-b^{4}=b^{2}$
$\Rightarrow b^{4}+b^{2}-12=0$
Simplify and get the value of $b^{2}$, we get,
$\Rightarrow b^{2}=-4$ or $b^{2}=3$
As $b$ is real no. so, $b^{2}=3$
$b=\sqrt{3}$ or $b=-\sqrt{3}$
Therefore, $a=2$ or $a=-2$
Hence the square root of the complex no. is $2+\sqrt{3}_{i}$ and $-2-\sqrt{3}_{i}$.