Solve this

Question:

$2 x+y-2 z=4$

$x-2 y+z=-2$

$5 x-5 y+z=-2$

Solution:

Using the equations we get

$D=\left|\begin{array}{rrr}2 & 1 & -2 \\ 1 & -2 & 1 \\ 5 & -5 & 1\end{array}\right|$

$\Rightarrow 2(-2+5)-1(1-5)-2(-5+10)=0$

$D_{1}=\left|\begin{array}{ccc}4 & 1 & -2 \\ -2 & -2 & 1 \\ -2 & -5 & 1\end{array}\right|$

$\Rightarrow 4(-2+5)-1(-2+2)-2(10-4)=0$

$D_{2}=\left|\begin{array}{ccc}2 & 4 & -2 \\ 1 & -2 & 1 \\ 5 & -2 & 1\end{array}\right|$

$\Rightarrow 2(-2+2)-4(1-5)-2(-2+10)=0$

$D_{3}=\left|\begin{array}{ccc}2 & 1 & 4 \\ 1 & -2 & -2 \\ 5 & -5 & -2\end{array}\right|$

$\Rightarrow 2(4-10)-1(-2+10)+4(-5+10)=0$

$\therefore D=D_{1}=D_{2}=0$

Hence, the system of linear equations has infinitely many solutions.

Leave a comment