If $A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
Given:
$A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$
$A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$
Now,
$A=\left[\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right]$
$\Rightarrow|A|=\left|\begin{array}{cc}\cos x & \sin x \\ -\sin x & \cos x\end{array}\right|$
$\Rightarrow|A|=\cos ^{2} x+\sin ^{2} x$
$\Rightarrow|A|=1$
As we know,
$A(\operatorname{adj} A)=|A| I$
$\Rightarrow\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]=|A| I$
$\Rightarrow k\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=|A| I$
$\Rightarrow k I=|A| I$
$\Rightarrow k=|A|$
$\Rightarrow k=1 \quad(\because|A|=1)$
Hence, $k=1$