If $y=\sqrt{x^{2}+a^{2}}$, prove that $y \frac{d y}{d x}-x=0$
Given $y=\sqrt{x^{2}+a^{2}}$
On differentiating $y$ with respect to $x$, we get
$\frac{d y}{d x}=\frac{d}{d x}\left(\sqrt{x^{2}+a^{2}}\right)$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{d}}{\mathrm{dx}}\left[\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{\frac{1}{2}}\right]$
We know $\frac{d}{d x}\left(x^{n}\right)=n x^{n-1}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{1}{2}\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)^{\frac{1}{2}-1} \frac{\mathrm{d}}{\mathrm{dx}}\left(\mathrm{x}^{2}+\mathrm{a}^{2}\right)$ [using chain rule]
$\Rightarrow \frac{d y}{d x}=\frac{1}{2}\left(x^{2}+a^{2}\right)^{-\frac{1}{2}}\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(a^{2}\right)\right]$
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x^{2}+a^{2}}}\left[\frac{d}{d x}\left(x^{2}\right)-\frac{d}{d x}\left(a^{2}\right)\right]$
However, $\frac{d}{d x}\left(x^{2}\right)=2 x$ and derivative of a constant is 0 .
$\Rightarrow \frac{d y}{d x}=\frac{1}{2 \sqrt{x^{2}+a^{2}}}[2 x-0]$
$\Rightarrow \frac{d y}{d x}=\frac{2 x}{2 \sqrt{x^{2}+a^{2}}}$
$\Rightarrow \frac{d y}{d x}=\frac{x}{\sqrt{x^{2}+a^{2}}}$
But, $y=\sqrt{x^{2}+a^{2}}$
$\Rightarrow \frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{x}}{\mathrm{y}}$
$\Rightarrow \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}=\mathrm{x}$
$\therefore \mathrm{y} \frac{\mathrm{dy}}{\mathrm{dx}}-\mathrm{x}=0$
Thus, $y \frac{d y}{d x}-x=0$