Solve this

Question:

If $x=a(\theta+\sin \theta), y=a(1+\cos \theta)$, find $\frac{d y}{d x}$

Solution:

$\frac{\mathrm{dx}}{\mathrm{d} \theta}=\mathrm{a}(1+\cos \theta)$ and $\frac{\mathrm{dy}}{\mathrm{d} \theta}=\mathrm{a}(-\sin \theta)$

Using Chain Rule of Differentiation,

$\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{dy}}{\mathrm{d} \theta} \cdot \frac{\mathrm{d} \theta}{\mathrm{dx}}$

$=a(-\sin \theta) \cdot \frac{1}{a(1+\cos \theta)}$

$=-\frac{\sin \theta}{1+\cos \theta}$

$=-\frac{\sin \theta}{1+\cos \theta} \cdot \frac{1-\cos \theta}{1-\cos \theta}$

$=-\frac{\sin \theta(1-\cos \theta)}{1-\cos ^{2} \theta}$

$=-\frac{\sin \theta(1-\cos \theta)}{\sin ^{2} \theta}$

$=-\frac{1-\cos \theta}{\sin \theta}$

$=\cot \theta-\operatorname{cosec} \theta($ Ans $)$

Leave a comment