Solve this

Question:

Let $X=\{-1,0,2,5\}$ and $f: X \rightarrow R Z: f(x)=x^{3}+1$. Then, write $f$ as a set of ordered pairs.

 

Solution:

Given, $X=\{-1,0,2,5\}$

$f: X \rightarrow R Z: f(x)=x^{3}+1$

Finding f(x) for each value of x,

(1) $f(-1)=(-1)^{3}+1=-1+1=0$

(2) $f(0)=(0)^{3}+1=0+1=1$

(3) $f(2)=(2)^{3}+1=8+1=9$

(4) $f(5)=(5)^{3}+1=125+1=126$

f in ordered pair is represented as

$f=\{(-1,0),(0,1),(2,9),(5,126)\}$

 

Leave a comment