If $y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}, 0
$y=\cos ^{-1}(2 x)+2 \cos ^{-1} \sqrt{1-4 x^{2}}$
Put $2 x=\cos \theta$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1} \sqrt{1-\cos ^{2} \theta}$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}(\sin \theta)$
$y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$
Considering the limits
$0 $0<2 x<1$ $0<\cos \theta<1$ $0<\theta<\frac{\pi}{2}$ $0>-\theta>-\frac{\pi}{2}$ $\frac{\pi}{2}>\frac{\pi}{2}-\theta>0$ Now, $y=\cos ^{-1}(\cos \theta)+2 \cos ^{-1}\left(\cos \left(\frac{\pi}{2}-\theta\right)\right)$ $y=\theta+2\left(\frac{\pi}{2}-\theta\right)$ $y=\pi-\theta$ $y=\pi-\cos ^{-1}(2 x)$ Differentiating w.r.t $\mathrm{x}$ we get $\frac{d y}{d x}=\frac{d}{d x}\left(\pi-\cos ^{-1}(2 x)\right)$ $\frac{d y}{d x}=0-\left[\frac{-2}{\sqrt{1-(2 x)^{2}}}\right]$ $\frac{d y}{d x}=\frac{2}{\sqrt{1-4 x^{2}}}$