Solve this

Question:

If $(\cos \theta-\sin \theta)=\sqrt{2} \sin \theta$ then prove that $(\cos \theta+\sin \theta)=\sqrt{2} \cos \theta$.

 

Solution:

$\cos \theta-\sin \theta=\sqrt{2} \sin \theta$

Squaring on both sides, we get

$(\cos \theta-\sin \theta)^{2}=(\sqrt{2} \sin \theta)^{2}$

$\Rightarrow \cos ^{2} \theta+\sin ^{2} \theta-2 \sin \theta \cos \theta=2 \sin ^{2} \theta$

$\Rightarrow \cos ^{2} \theta-\sin ^{2} \theta=2 \sin \theta \cos \theta$

$\Rightarrow(\cos \theta-\sin \theta)(\cos \theta+\sin \theta)=2 \sin \theta \cos \theta \quad\left[a^{2}-b^{2}=(a-b)(a+b)\right]$

$\Rightarrow \sqrt{2} \sin \theta(\cos \theta+\sin \theta)=2 \sin \theta \cos \theta \quad(\cos \theta-\sin \theta=\sqrt{2} \sin \theta)$

$\Rightarrow \cos \theta+\sin \theta=\frac{2 \sin \theta \cos \theta}{\sqrt{2} \sin \theta}$

$\Rightarrow \cos \theta+\sin \theta=\sqrt{2} \cos \theta$

 

 

Leave a comment