Let $\mathrm{f}:(2, \infty) \rightarrow \mathrm{R}: \mathrm{f}(\mathrm{x})=\sqrt{x-2}$, and $\mathrm{g}:(2, \infty) \rightarrow \mathrm{R}: \mathrm{g}(\mathrm{x})=\sqrt{x+2}$
Find:
(i) $(f+g)(x)$
(ii) $(f-g)(x)$
(iii) $(f g)(x)$
Given:
$\mathrm{f}(\mathrm{x})=\sqrt{x-2}: \mathrm{x}>2$ and $\mathrm{g}(\mathrm{x})=\sqrt{x+2}: \mathrm{x}>2$
(i) To find: $(f+g)(x)$
Domain $(f)=(2, \infty)$
Range $(f)=(0, \infty)$
Domain $(g)=(2, \infty)$
Range $(\mathrm{g})=(2, \infty)$
$(f+g)(x)=f(x)+g(x)$
$=\sqrt{x-2}+\sqrt{x+2}$
Therefore,
$(\mathrm{f}+\mathrm{g})(\mathrm{x})=\sqrt{x-2}+\sqrt{x+2}$
(ii) To find:(f - g)(x)
Range $(\mathrm{g}) \subseteq$ Domain(f)
Therefore,
$(f-g)(x)$ exists.
$(f-g)(x)=f(x)-g(x)$
$=\sqrt{x-2}+\sqrt{x+2}$
Therefore,
$(f-g)(x)=\sqrt{x-2}-\sqrt{x+2}$
(iii) To find:(fg)(x)
$(f g)(x)=f(x) \cdot g(x)$
$=(\sqrt{x-2}) \cdot(\sqrt{x+2})$
$=\sqrt{(x-2)(x+2)}$
$=\sqrt{x^{2}-2^{2}}\left(\because a^{2}-b^{2}=(a-b)(a+b)\right)$
$=\sqrt{x^{2}-4}$
Therefore,
$(f g)(x)=\sqrt{x^{2}-4}$