Solve this

Question:

If $(\sqrt{3}+\mathrm{i})^{100}=2^{99}(\mathrm{p}+\mathrm{i} \mathrm{q})$, then $\mathrm{p}$ and $\mathrm{q}$ are roots of the equation:

  1. $x^{2}-(\sqrt{3}-1) x-\sqrt{3}=0$

  2. $x^{2}+(\sqrt{3}+1) x+\sqrt{3}=0$

  3. $x^{2}+(\sqrt{3}-1) x-\sqrt{3}=0$

  4. $x^{2}-(\sqrt{3}+1) x+\sqrt{3}=0$


Correct Option: 1

Solution:

$\left(2 e^{i \pi / 6}\right)^{100}=2^{99}(p+i q)$

$2^{100}\left(\cos \frac{50 \pi}{3}+\mathrm{i} \sin \frac{50 \pi}{3}\right)=2^{99}(\mathrm{p}+\mathrm{i} \mathrm{q})$

$p+i q=2\left(\cos \frac{2 \pi}{3}+i \sin \frac{2 \pi}{3}\right)$

$p=-1, q=\sqrt{3}$

$x^{2}-(\sqrt{3}-1) x-\sqrt{3}=0$

Leave a comment